
Corsi Linux Avanzati 2019
WireGuard (VPN)

Davide Depau <davide@depau.eu>



What is a Virtual Private Network?

● It's an infrastructure that extends a private 
network across a public network

● Devices connected to a VPN can contact the 
other nodes as if they were directly 
connected to them



Virtual Private Network

A VPN can work either in layer 2 or in layer 3



On Linux

● Virtual network interfaces are used to create VPN 
tunnels

● tun interfaces provide layer 3 tunnelling
● tap interfaces provide layer 2 tunnelling
● We won't see how to create them as most VPN 

implementations will create their interfaces on 
their own



WireGuard

● Layer 3 VPN
● Extremely fast

○ Implemented as a Linux kernel module ⇒ as fast as it can be
○ Can be used in userspace if a kernel module is not desired
○ Almost stateless
○ Very simple protocol

● Highly reliable
○ Built-in roaming support
○ Created with DDoS attack resistance in mind



Use cases
- Limitation: Layer 3 ⇒ can't be bridged to other network interfaces

- You need a different LAN with optional static routes

- Personal VPN: perfect
- It allows roaming throughout different interfaces, downloads don't break if, for example, 

you quickly switch from mobile to Wi-Fi
- Low overhead
- Clients for every mobile platform - on rooted Android devices with custom kernel it can 

be used natively

- Connecting servers among cloud providers: awesome
- Connection is secure, packets are authenticated
- Allowed IPs setting is an additional layer of security
- Connection resumes automatically if a link goes down then back up

- Linux Containers
- We’ll see that later



How it works

1. The WireGuard implementation (kernel module or 
wireguard-go) provides a tunnel interface

2. The interface is given an IP address (with the ip tool, or 
systemd-networkd)

3. The wg tool is used to set the WireGuard-specific 
parameters

4. Optionally, routing rules are added



Routing

● Package on regular Ethernet/Wi-Fi private networks are 
sent to the right place thanks to ARP - Address 
Resolution Protocol
○ The device asks the network for the MAC address 

matching the IP address it wants to contact
○ The host in question replies with the requested info



Routing

However, WireGuard works in layer 3: no MAC 
addresses, no ARP.

How does WireGuard know what to do?

Cryptokey routing



Cryptokey routing

● Every peer is identified by
○ A public key
○ Its allowed IP addresses (a list of IP addresses with their netmasks)
○ Its endpoint public IP address:port (which can be dynamic for “clients”)

● The public/private key pair can be generated using the wg tool
● WireGuard supports both IPv4 and IPv6, for both the “public” peer 

addressing and the internal VPN addresses
● It also supports making IPv6 travel over IPv4 and vice versa



Cryptokey routing

When a packet is being routed (sent)

1. Based on its routing table, the OS picks the outgoing interface
2. WireGuard analyses the packet and it

a. Identifies the destination peer based on the packet’s destination address 
and the peers’ AllowedIPs

b. Encrypts the packet using the peer’s public key and signs it with its own 
private key

c. Sends it over UDP to the peer’s last known public IP address (which may 
change over time)



Cryptokey routing

When a packet is received

1. The packet is decrypted and authenticated against the peer’s 
public key
a. If the peer’s public IP address has changed, it is stored internally

2. The IP frame is analyzed
a. The source IP address is verified against the list of AllowedIPs for the 

source peer
b. If the peer is allowed to send packets from that address, it is routed, 

otherwise it is dropped



Cryptokey routing

This has some implications:

● Peers that are to be used as gateways must have AllowedIPs = 0.0.0.0/0 
set in the clients peers configs, otherwise the clients would drop packets 
from the Internet coming from that peer.

● All packets are authenticated by WireGuard itself. This means that if a 
packet comes from a known IP address from the WireGuard interface, the 
packet can be assumed secure and authentic.



Roaming

● An initial external (public) endpoint must be specified for at least one 
node in every peer pair to bootstrap the connection

● Once encrypted and authenticated data is received from a (new) IP 
address, the peers learn that address and will use it to send data to that 
peer

● WireGuard is not very chatty
○ It almost always only communicates with the peers when data is actually sent

● Keepalive packets may optionally be enabled to help traverse NATs (it 
does not do NAT hole-punching, though)



How to set it up (manually)

All commands need to be run as root

1. Add a WireGuard network interface
a. (Linux kernel module): ip link add dev wg0 type wireguard
b. (userspace implementations): wireguard-go wg0

2. Set its IP address(es)
a. (normal LAN) ip address add dev wg0 192.168.2.1/24
b. (peer2peer) ip address add dev wg0 192.168.2.1 peer 192.168.2.2

3. Set its WireGuard-specific configuration
a. wg setconf wg0 myconfig.conf



The config file (server 1)
[Interface]
Address = 192.168.42.1/24
PostUp = iptables -A FORWARD -i %i -j ACCEPT; 
iptables -t nat -A POSTROUTING -o eth0 -j 
MASQUERADE; iptables -A FORWARD -m conntrack 
--ctstate RELATED,ESTABLISHED -j ACCEPT
PostDown = iptables -D FORWARD -i %i -j ACCEPT; 
iptables -t nat -D POSTROUTING -o eth0 -j 
MASQUERADE; iptables -D FORWARD -m conntrack 
--ctstate RELATED,ESTABLISHED -j ACCEPT
ListenPort = 1194
PrivateKey = [server 1 private key]

[Peer]
PublicKey = [server 2 public key]
AllowedIPs = 192.168.42.2/32, 192.168.42.0/24
Endpoint = wgserver2.example.com:1194
PersistentKeepalive = 25

[Peer]
PublicKey = [client public key]
AllowedIPs = 192.168.42.100/32

● Setup with two peers with known 
external IPs (servers) and one peer 
with unknown external IP (client)

● This specific config file is for one of 
the servers and includes some 
iptables commands to (optionally) 
make it work as a NATting gateway

● The first server may reach the second 
one directly, because its endpoint is 
specified

● The client’s endpoint will be 
discovered when the client sends 
authenticated data to this peer



[Interface]
Address = 192.168.42.2/24
PostUp = iptables -A FORWARD -i %i -j ACCEPT; 
iptables -t nat -A POSTROUTING -o eth0 -j 
MASQUERADE; iptables -A FORWARD -m conntrack 
--ctstate RELATED,ESTABLISHED -j ACCEPT
PostDown = iptables -D FORWARD -i %i -j ACCEPT; 
iptables -t nat -D POSTROUTING -o eth0 -j 
MASQUERADE; iptables -D FORWARD -m conntrack 
--ctstate RELATED,ESTABLISHED -j ACCEPT
ListenPort = 1194
PrivateKey = [server 2 private key]

[Peer]
PublicKey = [server 1 public key]
AllowedIPs = 192.168.42.1/32, 192.168.42.0/24
Endpoint = wgserver1.example.com:1194

[Peer]
PublicKey = [client public key]
AllowedIPs = 192.168.42.100/32

The config file (server 2)

● This config is for the second server 
and is basically the same as the first 
server

● The 2nd server may also reach the 1st 
directly

● The client will get to pick which one 
will be used as a gateway (or choose 
to use none of them); it will be able to 
reach them by their own address 
anyway



[Interface]
Address = 192.168.42.100/24
DNS = 1.1.1.1
PrivateKey = [client private key]

[Peer]
PublicKey = [server 1 public key]
AllowedIPs = 0.0.0.0/0
Endpoint = wgserver1.example.com:1194

[Peer]
PublicKey = [server 2 public key]
AllowedIPs = 192.168.42.2/32, 192.168.42.0/24
Endpoint = wgserver2.example.com:1194

The config file (client)

● The 1st server has AllowedIPs = 
0.0.0.0/0. This means it will be 
allowed to send packets with any 
source IP address, i.e. it can be a 
gateway to the WAN

● The client will be able to reach both 
servers directly because both 
endpoints are specified

● The DNS is optional, of course



Some considerations

● PostUp/PostDown iptables commands are only needed to set up NAT on 
the servers so they can be used as gateways to the WAN.
They’re not needed in a p2p/star network layout where each node will 
reach the WAN on its own and only needs WireGuard to communicate 
securely with its peers.

● AllowedIPs = 0.0.0.0/0 is only needed for the gateway setup. If every node 
needs to communicate only with its peers, only /32 AllowedIPs should be 
used for extra security.



Encrypted WG transport

WAN: wgserver1.example.com
WG: 192.168.42.1

WAN: wgserver2.example.com
WG: 192.168.42.2

WAN: any IP reachable by peers
WG: 192.168.42.100

UDP wgserver1. <-> wgserver2.

UDP wgserver1. <-> [client IP] UDP [cl
ient IP

] <
-> wgserve

r2.

Encry
pted W

G tra
nsport

Pubkey AllowedIPs
srv1 pubkey 192.168.42.1/32

192.168.42.0/24
client pubkey 192.168.42.100/32

Pubkey AllowedIPs
srv1 pubkey 0.0.0.0/0
srv2 pubkey 192.168.42.2/32

192.168.42.0/24

Encrypted WG transport

Pubkey AllowedIPs
srv2 pubkey 192.168.42.2/32

192.168.42.0/24
client pubkey 192.168.42.100/32



How to set it up (automatically)
● The config files can be placed in a standard location in each host 

(/etc/wireguard/<configname>.conf)
● wg-quick can then be used to set everything up

○ A WireGuard interface with the same name as the config file will be created
○ IP+netmask is automatically set from the config file, [Interface] → Address
○ DNS, if specified, is automatically written to /etc/resolv.conf
○ Entries are automatically added to the kernel routing table
○ {Pre,Post}{Up,Down} commands are executed

● Syntax: wg-quick {up,down} <configname>
● It will try to find a config named /etc/wireguard/configname.conf



How to set it up (automatically)

● wg-quick usually comes with a 
systemd service template that can 
be used to set up the interfaces 
automatically at boot

● It can be enabled on distros with 
systemd init system with
systemctl enable --now 
wg-quick@configname.servic
e

[Unit]
Description=WireGuard via 
wg-quick(8) for %I
After=network-online.target
Wants=network-online.target

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/bin/wg-quick up %i
ExecStop=/usr/bin/wg-quick down %i

[Install]
WantedBy=multi-user.target



Containers

● The WireGuard interface remembers which network namespace it was created 
in

● It can then be moved to another namespace (i.e. a container namespace); the 
UDP socket will stay in the original namespace

● https://www.tauceti.blog/post/kubernetes-the-not-so-hard-way-with-ansible-w
ireguard/

https://www.tauceti.blog/post/kubernetes-the-not-so-hard-way-with-ansible-wireguard/
https://www.tauceti.blog/post/kubernetes-the-not-so-hard-way-with-ansible-wireguard/


Stability
● In general, WireGuard is considered unstable and the kernel module 

hasn’t been mainlined yet, though effort is being put in that direction
● The protocol itself may be subject to changes, so ensuring all nodes run 

the same version of WireGuard may be desired
● However, the authors say that mostly to “cover their back” in case 

anything breaks
● WireGuard has undergone all sorts of formal verification, covering both 

the protocol and cryptography
● Many people use it in production environments, including a bunch of 

commercial VPN providers

https://www.wireguard.com/formal-verification/


Performance

● Being in-kernel, simple, designed for parallelism and resistance to DoS, 
WireGuard offers incredible performance compared to most VPN 
solutions

● It appears stateless to userspace. Once you set it up you can forget about 
it, it will “just work”

● In my tests, the bandwidth has always almost matched the link’s 
bandwidth, usually with barely 2-5% overhead at most, even on hosts with 
RISC CPUs (ARM)

● Official benchmarks show it’s 4x faster than OpenVPN
● Userspace implementation obviously are a bit slower, but still faster than 

OpenVPN



Security

● Some aspects are considered controversial, in particular the fact that 
WireGuard implements cryptographic functions instead of using the 
kernel’s Crypto API

○ This was done because the Crypto API wasn’t as flexible as required and was not very fast
○ The cryptographic functions have undergone through formal verification, though, and are 

considered “secure”

● The fact that WireGuard runs in kernel space implies that any bugs may 
have some serious implications

○ However, the module has very little lines of code (~4000, vs. ~120000 + OpenSSL for 
OpenVPN) which can be reviewed even by individuals quite easily

○ Userspace implementations may be used if this is a concern



Security

● When configured incorrectly, instead of just working 
insecurely, WireGuard will simply refuse to work

● This may happen, for example, when peers have wrong 
public/private key pairs, AllowedIPs for a peer has been 
configured incorrectly



Links

● Linux Plumbers Conference 2018 slides: 
https://www.wireguard.com/talks/lpc2018-wireguard-sl
ides.pdf

● The main website: https://www.wireguard.com/install/
● ArchWiki, as always: 

https://wiki.archlinux.org/index.php/WireGuard

https://www.wireguard.com/talks/lpc2018-wireguard-slides.pdf
https://www.wireguard.com/talks/lpc2018-wireguard-slides.pdf
https://www.wireguard.com/install/
https://wiki.archlinux.org/index.php/WireGuard


Thank you!

Davide Depau <davide@depau.eu>

Rilasciato sotto licenza Creative Commons 
Attribution-NonCommercial-ShareAlike 4.0 International


