
Docker
Corsi GNU/Linux Avanzati 2017

Filippo Cremonese (fcremo)

21 Marzo 2017



What is docker?

Docker containers wrap up a piece of software in a
complete filesystem that contains everything it needs to
run: code, runtime, system tools, system libraries –
anything you can install on a server. This guarantees that
it will always run the same, regardless of the environment
it is running in.



Ok, and what is a containter?

• A docker container is an isolated execution environment
• System resources can be assigned to it (fs, net, etc)
• Resource usage can be restricted (e.g. to a % of CPU time)
• It is not a chroot
• It is not a virtual machine

• All containers use the same host kernel
• Lightweight on CPU and RAM



What this talk is not about

• Cloud!
• Devops
• Microservices architecture
• Horizontal scaling
• Orchestration

Note: some of these buzzwords are actually useful and serious
things, but are beyond what can be covered in a short talk.



Installing docker

Docker is often available in the repos, so you can (e.g. on Ubuntu)

sudo apt-get install docker.io

But the version in the repo is usually outdated.

If you want the latest version you can follow instructions at
https://docs.docker.com/engine/installation/

https://docs.docker.com/engine/installation/


Hello world

$ docker run alpine /bin/echo 'Hello, world'
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
627beaf3eaaf: Pull complete
Digest: sha256:58e1a1bb75db1b5a...
Status: Downloaded newer image for alpine:latest



What just happened?

Docker has:
• Downloaded Alpine Linux image (a light GNU/Linux distro)
• Unpacked it
• Created a new container
• Run /bin/echo ’Hello world’ inside it



Interactive hello world

Execute an interactive shell (-i and -t options)

$ docker run -i -t alpine /bin/sh
/ # echo Hello World
Hello World
/ # hostname
9422707bd6c6
/ # cat /etc/issue
Welcome to Alpine Linux 3.5
...
/ # exit
$



Noninteractive hello world

Execute a container in background (-d option)

$ docker run -
d --name hello_world alpine /bin/sh \

-
c 'while true; do echo Hello World; sleep 1; done;'
c93138893fc1807bc306706598020d68...

Every container has a unique name and hash.
To list existing containers run

$ docker ps -a

The -a option specifies to print all containers, not just running
ones.



Starting to get messy

To delete a container use

$ docker rm <container_name_or_hash>

Running containers can’t be deleted, so to delete hello_world we
first have to stop it:

$ docker stop hello_world
hello_world
$ docker rm hello_world
hello_world

Many commands print the name (or hash) of the affected
containers.



Enough hello worlds!
How do I run my own applications in docker?

For this demo we’ll use Up1, a node.js application.

https://github.com/Upload/Up1

It’s a client-side encrypted file sharing service.



Creating an image: Dockerfiles

Docker images are usually built from a Dockerfile.
A Dockerfile is a text file containing a list of directives that are
executed to create the image.



Example Dockerfile
FROM node:latest
MAINTAINER fcremo@users.github.com
EXPOSE 9000:9000
ENV HTTP="true" HTTP_LISTEN="0.0.0.0:9000" [...]
RUN apt-get install -y git && cd /srv && \

git clone https://github.com/Upload/Up1 && \
cd Up1/server && npm install && \
apt-get remove -y git

WORKDIR /srv/Up1/server
COPY server.conf.template server.conf.template
COPY genconfig.sh genconfig.sh
COPY entrypoint.sh entrypoint.sh
COPY config.js.template ../client/config.js.template
RUN chmod +x genconfig.sh entrypoint.sh
ENTRYPOINT /srv/Up1/server/entrypoint.sh



Building the example Dockerfile

$ git clone https://github.com/fcremo/Up1-
docker.git
$ cd Up1-docker
$ docker build -t fcremo/up1 .

It’s gonna take a couple of minutes...



Useful commands

Command Description
docker run create and run a container

docker [re]start/stop/kill [re]start/stop/kill a container
docker ps list containers
docker rm delete a container

docker rename rename a container
docker images list images
docker build build an image
docker rmi delete an image

docker network manage networks
docker help [command] get documentation



Run the new image

$ docker run -e "API_KEY=random1" \
-e "DELETE_KEY=random2" \
--name up1 -p 8080:9000 \
-v /tmp/up1:/srv/Up1/i/ \
-d fcremo/up1

Option Meaning
–name up1 Gives the container the name up1

-p 8080:9000 Map host:8080 to container:9000
-e KEY=VAL Set environment variables

-v /host/:/cont/ Mount /host/ to /cont/
-d Run in background



Configuring containers

When possible use environment variables

• Create configuration files on first run
• Usually done using templates

• shell/sed/awk scripts
• https://github.com/jwilder/dockerize

Otherwise, mount configuration files

• e.g. docker run -v /host/config:/app/config myapp
• Thou shall not rebuild an image to configure an app



Demo: Up1-docker configuration

How Up1-docker creates configuration files using templates.



Isolating and linking containers

By default, new containers are put into the legacy bridge network.
They can communicate to each other but cannot resolve
hostnames dynamically.

Docker allows you to create user defined networks.
Containers on the same network can discover (via DNS) and reach
each another.



Linking containers
As an example we’ll configure a reverse proxy with caddy to serve
up1 over tls.
First, create a network and connect up1 container to it:

$ docker network create my-network
$ docker network connect my-network up1

Then run caddy in a new container attached to that network.

$ docker run -d -
v /var/docker/caddy:/root/.caddy \

-
v /var/docker/caddy/Caddyfile:/etc/Caddyfile \

-p 80:80 -
p 443:443 --name caddy --restart always

--network my-network abiosoft/caddy



Managing multiple containers

No one wants to manually manage multiple containers.
Docker-compose lets you define services as groups of containers,
using a yml file.
We’ll use mattermost, a FOSS group chat like slack, as an example.



Getting docker-compose

Follow instructions at

https://docs.docker.com/compose/install/



docker-compose.yml example

Get docker-compose.yml from

https://github.com/jasl8r/docker-mattermost

and execute

$ docker-compose up



Fine

Grazie per l’attenzione!

Queste slides sono licenziate Creative Commons Attribution-ShareAlike 4.0

http://www.poul.org

http://www.poul.org

	Intro
	What is docker?
	Docker crash course
	Installing docker
	Hello world
	Interactive hello world
	Noninteractive hello world

	Running applications in docker
	Example Dockerfile
	Managing containers
	Configuring apps running in containers

	Container internetworking
	Managing multiple containers

