
16 Gennaio 2017
NECSTLab

Me

Federico Izzo
federico.izzo42@gmail.com

github.com/Nimayer

mailto:federico.izzo42@gmail.com
https://github.com/Nimayer

A thanks to Nicola Corna
Who introduced me to coreboot and did

the great part of the work on Intel ME

nicola@corna.info

github.com/corna

mailto:nicola@corna.info
https://github.com/corna

Index
What is coreboot?
How do I install
it?
Intel ME

What is coreboot?
coreboot is a project meant to replace the proprietary �rmware

(BIOS or UEFI) present in most computers

We could say that coreboot is an open source BIOS

However coreboot is not a
proper BIOS

A BIOS �rmware:
performs hardware initialization
provides runtime calls for the OS

coreboot does just the hardware
initialization

Modern Windows versions and Linux don't use BIOS calls anymore

You can still run DOS using SeaBIOS on
coreboot

Benefits
FOSS software

Safer
Hackable
BIOS backdoor free

Very fast! (0.5/1 s from o� to Linux kernel boot)
Written almost completely in 32-bit C language

Unlike commercial BIOSes that are written in 16-bit
assembler

Follows the rule "initialize the hardware, then get out of the way"

Downsides
Few hardware supported
Complex compilation
Hard to install
New CPU generations make development and installation
harder

Intel Boot Guard

How does it work?
coreboot code is split in four main stages:

Bootblock
Romstage
Ramstage
Payload

Bootblock
In this stage coreboot:

Reads CMOS con�guration
Decides in which mode to start (Normal or
Fallback)

Romstage
This is the most critical stage, here coreboot initializes RAM memory

and Intel ME.

Initializes debugging peripherals
Initializes the chipset
Con�gures the memory
Allocates the shared memory Intel ME
requires

Ramstage
During this stage coreboot initializes the remaining peripherals and

then jumps into the payload.

After this stage coreboot has done its work and won't execute any
code until suspension or shutdown.

Payloads
Now that the hardware is initialized we can let another software

continue the boot process.

The most interesting payloads are:

SeaBIOS
Tianocore
(UEFI)
GRUB
Linux

Payloads
There are also secondary payloads that can be booted:

nvramcui: con�guration utility
coreinfo: information dump
Memtest86+: memory test
Tint: tetris
GRUB invaders: you get the
idea

SeaBIOS

SeaBIOS
A complete x86 BIOS implementation.

coreboot + SeaBIOS provides you a complete BIOS system, good
starting point for a coreboot setup.

Tianocore

Tianocore
Tianocore is Intel's UEFI reference implementation, released under

open source licenses.

Duet is part of Tianocore, it should give you UEFI support on coreboot

if you are able to make it work, I failed.

Tianocore can also include SeaBIOS as CSM, to get an UEFI + BIOS
system.

GRUB

GRUB
You already know GRUB.

Probably you don't know that GRUB can be run directly from
coreboot, without a BIOS.

This is due to the fact that Linux does not use BIOS legacy calls.

GRUB
It has some advantages with respect to SeaBIOS:

Faster
Has less code
Built-in crypto

Can unlock LUKS volumes
Can verify kernel/initramfs
signatures

Linux

Linux
coreboot can boot directly a Linux Kernel from the onboard ROM.

Has some drawbacks: you need to �ash again the ROM each time
you want to update the kernel or even change the cmdline.

It gives you even more flexibility than GRUB,

For example look at the which uses tpm for
�rmware and �lesystem measurement.

HEADS bootloader

https://github.com/osresearch/heads

nvramcui

An utility to change CMOS con�guration.

coreinfo

An utility to view system info.

Memtest86+

A tool to check the RAM health.

TinT (Tint is not Tetris)

TETRIS!!!

GRUB invaders

Space invaders!!!

coreboot: how
do I install it?

The installation is divided into four steps:
Prepare the building
environment
Dump your original BIOS
Compile coreboot
Flash the coreboot image

The building environment
 you can �nd the o�cial guide, that follows a questionable

order.
here

What you have to do is:
Clone the coreboot repository

Compile the cross-compiler, coreboot runs in 32bit
mode

Con�gure coreboot

$ git clone --recursive http://review.coreboot.org/p/coreboot
$ cd coreboot

make crossgcc-i386 CPUS=4

make menuconfig

https://www.coreboot.org/Build_HOWTO

Try it with QEMU!
It is possible to try coreboot+payload on

QEMU before messing with the hardware
Do make menuconfig to con�gure coreboot

check that the Mainboard menu looks like this:

vendor: Emulation
model: QEMU x86
q35/ich9

Leave the menucon�g and do make -jN to compile

The coreboot.rom �le inside the build subfolder is your image

You can run QEMU using

qemu-system-x86_64 -M q35 -bios build/coreboot.rom

To build an image for your laptop
you will need a dump of the �ash content, to extract:

Intel Flash Descriptor
Intel ME Firmware
Gigabit Ethernet
Firmware
Intel GPU VBIOS
(optional)

What there is inside an Intel PC flash:

The Intel ME region is accessible only by ME itself, also, the BIOS
region can be write-protected.

However it is possible to read or write the entire �ash by connecting
an external programmer to the �ash chip.

Dumping the hard way
The �ash chip uses the SPI protocol,

So we can read its content using the SPI interface of a Raspberry Pi
or a similar board with 3.3V GPIO

Find the flash

SOIC-8

DIP-8

SOIC-16

PLCC-32

Clips!
You can �nd the �ash chip pinout inside its datasheet

You can use these to connect the chip

SOIC-8 testclip SMD clips

I found the SMD clips more reliable

Connect the wires
First of all unplug your charger and remove the battery

Raspberry Pi pins to be connected in this order

RPi Flash

GND GND

CS0 CS

SPI0 SCLK CLK

3.3V PWR 3.3V

SPI0 MISO MISO

SPI0 MOSI MOSI

Flashrom
Compile �ashrom from the or install it from your

package manager
github repo

The Raspberry Pi command is:

flashrom -p linux_spi:dev=/dev/spidev0.0 -r dump.bin

Flashrom may ask you to specify your chip model if he cannot detect
it automatically, you can use the option -c <chipname>

(e.g. on a Thinkpad X220 the option would be -c W25Q64.V)

A good practice is to make two dumps and compare the results
(using diff) to be more safe

https://github.com/flashrom/flashrom

Extract the blobs
The utility ifdtool included in the coreboot tree can be used to

extract our dump

Compile the utility

Extract the �ash regions

You will �nd the extracted �ash regions in the
folder:

BIOS
ME blob
GbE blob
Flash Descriptor

cd coreboot/util/ifdtool
make

mkdir extracted_dump
cp dump.bin extracted_dump/
./util/ifdtool/ifdtool -x extracted_dump/dump.bin

Configuration
coreboot uses a Linux kernel like con�guration

Use make menuconfig to open the con�guration tool and the help
button to get a description of the elements.

I will show you a standard con�guration, it's up to you to try the
other settings (hint: normal/fallback)

Configuring coreboot pt.I
The main options to set are:

Mainboard
Mainboard vendor: your computer brand
Mainboard model: your computer model
Rom chip size: the �ash chip size

Chipset
Include microcode in CBFS: Generate from tree
Add Intel descriptor.bin �le: we extracted it
before
Add Intel ME/TXT �rmware: same thing
Add gigabit ethernet �rmware: same thing

Configuring coreboot pt.II
Devices

Use native graphics initialization: usually works
Enable PCIe Clock Power Management: good idea

Display
Keep VESA framebu�er: graphical mode instead of
text

Generic Drivers
Enable TPM support

Payload
Add a payload: SeaBIOS or
Secondary Payloads: see

one of your choice
here

Compiling
To compile run make -jN

The resulting image will be in coreboot/build/coreboot.rom

Flashing coreboot
To �ash the image the �rst time we need to use the SPI connection,

as we did for the dump

From the next time we can �ash directly from linux because in
coreboot the write protection of the BIOS/ME blob is optional

The command to �ash using a Raspberry Pi is:

flashrom -c <chipname> -p linux_spi:dev=/dev/spidev0.0 -w coreboot.rom

force_I_want_a_brick
Once you have booted Linux, you can update coreboot using:

flashrom -c <chipname> -p internal:laptop=force_I_want_a_brick -w coreboot.rom

After updating coreboot, the best thing is to turn o� completely
your computer in order to run the newly �ashed BIOS/ME blob

Intel ME

Intel ME
Intel Management Engine is a secondary processor integrated in all

Intel motherboard chipsets from 2008 onwards.

It is mainly used for Intel AMT (Advanced Management Technology)
on CPUs with vPRO enabled.

Intel AMT is an out-of-band management technology, o�ering:

network tunnel over untrusted
network
remote power control
remote KVM
network packet �lter
PAVP for DRM media
more ...

https://en.wikipedia.org/wiki/Intel_Active_Management_Technology#Features

Intel ME

Intel ME

ME capabilities
Intel ME has access to:

Any memory region
The PCI bus
The GPU
Wired and wireless NIC (with dedicated MAC
address)
more ...

The firmware
Its �rmware is proprietary, so not security auditable, and it's signed

with RSA by Intel

It's not encrypted but a lot of modules are Hu�mann compressed
with unknown hardware dictionary, so their code cannot be easily

accessed.

How do I disable
it?

How do I disable it?
Until 1st generation Core CPUs (Nehalem) it was possible to remove

the ME �rmware by modifying the Intel Flash Descriptor (see
)

the
libreboot page

From Nehalem onwards, if the �rmware is removed, the Computer
turns o� after 30 minutes; this is probably done to avoid the bypass

of Intel Anti-Theft (now discontinued)

https://libreboot.org/docs/hcl/gm45_remove_me.html

Result
In all modern Intel computers we have a perfect backdoor

framework, not removable, and with complete access to all the
machine resources.

Also, ME is active even in S5 power state (computer o�)

Is there anything
that we can do?

Is there anything that we can do?
In September 2016 Trammell Hudson discovered that wiping the

�rst 4KB of Intel ME �rmware from his Thinkpad X230 with coreboot,
the Computer would still turn on and won't shut down after 30

minutes.

From this discovery he started digging and found that it is possible
to remove:

All the partitions but the main one
All the LZMA compressed modules from the main
partition

We can wipe the code
Even not removing completely Intel ME, this process strongly limits

its capabilites, in fact it removes code for:

Network access (contained in the removed NFTP
partition)
PAVP (Protected Audio-Video Path)
The JVM (meant to enable the use of DRM applets)

me_cleaner.py
In November 2016, me and Nicola began testing with Intel ME to

replicate Hudson's results and see how much more code we could
remove.

To aid this purpose, Nicola wrote a python script to remove as much
code as possible from an Intel ME �rmware image.

github.com/corna/me_cleaner

https://github.com/corna/me_cleaner

Our findings
We con�rmed Trammell Hudson's work, in particular:

The partition table can be removed (an internal one will be
used)
All the partitions can be removed except FTPR (the main one)
All the LZMA modules inside the FTPR can be removed

Also all the Hu�mann modules but one (BUP) can be removed.

This way we are left with just 50KB of code (compressed size)

This works on Platforms from Sandy Bridge to Broadwell.
These modi�cations work even with an OEM BIOS

Drawbacks?
Removing the code appears to hang Intel ME

But apart from AMT, there are more things ME can do in a system:

Platform clock
con�guration
Remote thermal
monitoring
Silicon Workaround

Until now ~30 me_cleaner users reported no bugs.

Signatures
The code is signed at partition level:

removing an entire partition doesn't break a signature,
but removing modules from a partition should break
it.

Then why the system boots even if we remove some modules?

The signatures work like this:

Number of modules

RSA public key

RSA exponent

RSA signature

$BUP

$KERNEL

...

Module name

SHA-256 hash

Load base

Offset

Partition name

Partition header

Modules manifests

Module manifest

Si
gn

s

The signatures work like this:
Partition header -sign-> manifest list -hash-> manifest

The module manifest list signature is valid because it contains the old
hashes (we don't modify them).

But those hashes are broken because we removed the code.

Apparently the hash check is done before executing each module.

So we can not run unsigned code, but we can boot the system.

The last question is:
How can I be sure that Intel ME does not have a backup ROM inside

with a fallback �rmware?

The ROMB partition
Luckily the reverse engineering work of Igor Skochinsky answer us:

Inside some versions of ME �rmware, there is a special partition
called ROMB (ROM Bypass)

This partition contains code that overrides the internal ROM, used to
�x bugs in early silicon.

The ROMB partition
Igor analized this update partition and found out it contains:

Common C functions (memcpy, memset,
strcpy...)
ThreadX routines (Intel ME RTOS)
Low level hardware access API

The ROMB partition
The internal ROM appears to:

Do basic hardware init
Check the FTPR partition signature
Load the BUP module and jumps to
it

Proof of this can be found inside "Intel Con�dential" documents that
you can �nd on Google

Try to google "loading an ME FW binary image" or "management engine
system tools", including quotation marks.

Final notes
If you want to test me_cleaner on your computer,

You can �nd a guide
And here there are

here
more

details

http://hardenedlinux.org/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html
https://github.com/corna/me_cleaner/wiki/How-does-it-work%3F

Final notes
Here is a rough compatibility table

Gen with vPRO without vPRO

Core2 OK1 OK1

Nehalem WIP WIP

Sandy - Ivy Bridge OK2 OK2

Haswell - Broadwell NO OK2

Skylake NO OK3

1 See this (no code left)
2 Only BUP module left (~50KB)

3 Only FTPR partition left (~668KB)

libreboot page

https://libreboot.org/docs/hcl/gm45_remove_me.html

More info:
Intel ME Firmware Structure

Igor Skochinsky - Rootkit in your laptop - 2012

Igor Skochinsky - Intel ME Secrets - 2014

Trammel Hudson - coreboot Mailing List

Nicola Corna - coreboot Mailing List

http://me.bios.io/ME_blob_format
http://me.bios.io/images/c/ca/Rootkit_in_your_laptop.pdf
https://recon.cx/2014/slides/Recon%202014%20Skochinsky.pdf
https://www.coreboot.org/pipermail/coreboot/2016-September/082016.html
https://www.coreboot.org/pipermail/coreboot/2016-November/082331.html

Thank you!

These slides are licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported

www.poul.org

https://www.poul.org/

