@

coreboot

Federico 1zzo

federico.izzo42@gmail.com

github.com/Nimayer

mailto:federico.izzo42@gmail.com
https://github.com/Nimayer

A thanks to Nicola Corna

Who introduced me to coreboot and did
the great part of the work on Intel ME

nicola@corna.info

github.com/corna

mailto:nicola@corna.info
https://github.com/corna

Index

e What is coreboot?

e How do | install
it?

e Intel ME

What is coreboot?

coreboot is a project meant to replace the proprietary firmware
(BIOS or UEFI) present in most computers

We could say that coreboot is an open source BIOS

However coreboot is not a
proper BIOS

e A BIOS firmware:
= performs hardware initialization
= provides runtime calls for the OS
e coreboot does just the hardware
initialization

Modern Windows versions and Linux don't use BIOS calls anymore

e You can still run DOS using SeaBIOS on
coreboot

Benefits

FOSS software
m Safer
= Hackable
= BIOS backdoor free
Very fast! (0.5/1 s from off to Linux kernel boot)
Written almost completely in 32-bit C language
= Unlike commercial BIOSes that are written in 16-bit
assembler
Follows the rule "initialize the hardware, then get out of the way"

Downsides

Few hardware supported

Complex compilation

Hard to install

New CPU generations make development and installation
harder

= |ntel Boot Guard

How does it work?

coreboot code is split in four main stages:

e Bootblock
e Romstage
e Ramstage
e Payload

Bootblock

In this stage coreboot:

e Reads CMOS configuration
e Decides in which mode to start (Normal or
Fallback)

Romstage

This is the most critical stage, here coreboot initializes RAM memory
and Intel ME.

e |nitializes debugging peripherals

e |nitializes the chipset

e Configures the memory

e Allocates the shared memory Intel ME
requires

Ramstage

During this stage coreboot initializes the remaining peripherals and
then jumps into the payload.

After this stage coreboot has done its work and won't execute any
code until suspension or shutdown.

Payloads

Now that the hardware is initialized we can let another software
continue the boot process.

The most interesting payloads are:

e SeaBIlOS

e Tianocore
(UEFI)

e GRUB

e Linux

Payloads

There are also secondary payloads that can be booted:

® nvramcui: configuration utility

e coreinfo: information dump

e Memtest86+: memory test

e Tint: tetris

e GRUB invaders: you get the
idea

SeaBIOS

HeaBI0S (version rel-1.9.3-0-gedfcdle)

iPXE (http:rrsipxe.org) 00:03.0 CAGE PCIZ.10 PnP PMM+O?FAQSZ0+07EEQSZ0 CAOO

Press ESC for bhoot menuw.
Select boot device:

DUD-CD [atal-0: QEMU DUD-ROM ATAPI-4 DUD.-CD]
iPXE (PCI 00:03.0)

Payload [memtest]

Payload [tint]

Payload [nvramcuil

Payload [coreinfol

SeaBIOS

A complete x86 BIOS implementation.

coreboot + SeaBIOS provides you a complete BIOS system, good
starting point for a coreboot setup.

Tianocore

HET:

& GHz
B RAM

[I e
= =

UET{ %64 .UEFI }Beta: 2.8

Thiz zelection will

elect Language <English= direct the swztem to
oot Manager continue to booting

evice Manoger process

oot Maintenance Manager

=Move Highlight

Tianocore

Tianocore is Intel's UEFI reference implementation, released under
open source licenses.

Duet is part of Tianocore, it should give you UEFI support on coreboot
if you are able to make it work, | failed.

Tianocore can also include SeaBIOS as CSM, to get an UEFI + BIOS
system.

GHNU GRUB wversion 2.02 beta3

Boot =signed kernel directly from ~devrsdal

Boot =signed kernel directly from rdevrszdaZ (verbose)

Boot =signed kernel directly from rdevrszdaZ (verbose, recovery mode)
Boot =igned old kernel directly from sdeurssdal

Boot =signed old kernel directly from -sdevrssdaZ (verbose)

Boot =signed old kernel directly from ~sdevrssdaZ (verbose, recovery mode)
Parse ISOLINUX-/SYSLINUX menu (U3B)

Parse ISOLINUX-/SYSLINUX menu (CD)

3can for GRUB configurations on the interwnal HDD

Show board info

Edit CHO3 settings

Play Tetris

Use the T and | keys to select which entry is highlighted.

Press enter to boot the selected 05, e +to edit the commands

before booting or "¢’ for a command-line.

GRUB

You already know GRUB.

Probably you don't know that GRUB can be run directly from
coreboot, without a BIOS.

This is due to the fact that Linux does not use BIOS legacy calls.

GRUB

It has some advantages with respect to SeaBIOS:

e [aster
e Has less code
e Built-in crypto
= Can unlock LUKS volumes
= Can verify kernel/initramfs
signatures

.0402281
.0406271
.0408151
.0408211
.0409891
.0413131
.0414511
.0414561
.0446071
0447291
0447341
0452281
0452621
0452711
0452921
.0455101
.0464741
.0464791
.0465461
.0465551
.0466Z11
LA177741
.4416021
. 4566221
4761381
4767331
5106221
.5259341
.9414401
19929561
9935451
.6262061
. 7481531
.8696131
.3596081
.5452591
.5669391
.5696131
.6108761

hub 4-0:1.0: 5 ports detected
Initializing USB Mass Storage driver...
ushcore: registered new interface driver usb-storage
USB Mass Storage support registered.
ushcore: registered new interface driver libusual
nice: PS/Z2 mouse device common for all mice
ushcore: registered new interface driver xpad
xpad: ¥-Box pad driver
usbcore: registered new interface driver hiddeu
usbcore: registered new interface driver usbhid
usbhid: USB HID core driver
snd_xenon: iobase_phys=0xZ00ea001600 icbase_uirt=0xd000080061074600
xenon_snd: give me an interrupt, please!?
snd_xenon: irg=40
snd_xenon: descr_base_virt=0xc00000001836e000, descr_base_phys=0x1836e000
snd_xenon: driver initialized
ALSA device list:
#0: Xenon AudioPCI at Ox200ea001600 irg 64
TCP cubic registered
NET: Registered protocol family 17
Registering the dns_resoluer key type
ataZ.00: 486397168 sectors, multi 16: LBA48 NCQ (depth 0-32)
atazZ. 00 cnnfigured for UDMA-133
scsi 1:0: 0 Direct-Access ATA ST9250315A3 0002 Pij: 0 ANSI: 5
sd 1:0:0:0: [sdal 488397168 512-byte logical blocks: (250 GB-Z232 GiB)
sd 1:0:0:0: Attached scsi generic sgl type O
sd 1:0:0:0: [sdal Write Protect is off
sd 1:0:0:0: [sdal Mode Sense: 00 3a 00 00
sd 1: :0: [sdal Write cache: enabled, read cache: enabled, doesn’t support DPO or FUA
ush 2- 2 new high speed USB device using ehci_hcd and address 3
sda: unknown partition table
sd 1:0:0:0: [sdal Attached SCSI disk
scsi2 : usb-storage 2-2:1.0
usb 2-3: new high speed USB device using ehci_hcd and address 4
ush 4-1: new low speed USB device using ohci_hcd and address 2
input: SIND WEALTH USB KEYBOARD as ~devices./pci0000:00,0000:00:05.0-usb4,4-1,4-1:1.0/input.input®
generic-ush 0003:258A:0001.0001: input,hidrawd: USB HID ul.10 Keyboard [SINO WEALTH USB KEYBOARD] on ush-0000:00:05.0-1/input®d
Sending DHCP requests .
input: SINO WEALTH USB KEYBOARD as ~devices/pcif000:00,0000:00:05.0/usb4/4-1-4-1:1.1/input/inputl

Linux

coreboot can boot directly a Linux Kernel from the onboard ROM.

Has some drawbacks: you need to flash again the ROM each time
you want to update the kernel or even change the cmdline.

It gives you even more flexibility than GRUB,

For example look at the HEADS bootloader which uses tpm for
firmware and filesystem measurement.

https://github.com/osresearch/heads

nvramecui

oreboot configuration utility

boot_option Fallback
reboot _counter 15

baud rate 115200
debug_level Emergency

nmi Dizsable

power_on_after_fail Dizable

first_battery Jecondary

bluetooth Dizable

An utility to change CMOS configuration.

coreinfo

coreinfo 0.1
CFU Information

Uendor: AMD

Processor: QEMU Virtwal CPU wversion 2.5+
Family: b6

Model: 6

Stepping: 3
Brand: ©
CPU Speed: 2549 Mh=z

Features:

fpu de pse tsc msr pae mce cxB apic sep mirr pge mca cmov pat
pse3b clflsh mmx fxsr =se ssel
AMD Extended Flags:

fpu de pse tsc msr pae mce cxB apic sep mirr pge mca cmov pat
lahf s=sahf svm xsr Im

[A: CPU Infol [B: PCI]1 [C: NURAMI [D: RAM Dump]l
Fl1: System FZ2: Firmware 04,07 ,2024 - 07?:55:37

An utility to view system info.

Memtest86+

QEMU WVirtwal CPU wersion 2.5+
LE: 2496 MHz (X641 Mode) Pass 14» #nutt
.1 Cache: 64K 984 MB-r=s Test 63+ ##uHudHEdHHEHHEHARERHERETYT
L Cache: 512K 972 MBrs Test #6 [Moving inversions, random patternl
.3 Cache: HNone Testing: 10Z24K - 1Z28M 1Z27M of 127M
1283 MBrs Pattern: 6d6e9a02 i
oreff: @ (SMP: Disabled) Chipset: Intel i440FX

% Runmning. .. RAM Type: EDO DRAM
1 fActive ~

(E3C)exit (clconfiguration (SP)scroll_lock (CR)scroll_unlock

A tool to check the RAM health.

TinT (Tint is not Tetris)

Your lewvel: 1 STATISTICS
Full lines: 0@

Score 7

HELTP

Pause

Left

Right

Rotate

Draw next
Toggle lines
Speed up

D Quit

SPACE: Drop

E:
J:
1:
k:
=
d:
ac:
q

Next:
Score ratio
Efficiency

TETRIS

GRUB invaders

Space invadersl!!!

coreboot: how
do | install it?

The installation is divided into four steps:

e Prepare the building
environment

e Dump your original BIOS

e Compile coreboot

e Flash the coreboot image

The building environment

here you can find the official guide, that follows a questionable
order.

What you have to do is:

e Clone the coreboot repository

$ git clone --recursive http://review.coreboot.org/p/coreboot
$ cd coreboot

e Compile the cross-compiler, coreboot runs in 32bit
mode

make crossgcc-1386 CPUS=4

e Configure coreboot

make menuconfig

https://www.coreboot.org/Build_HOWTO

Try it with QEMU!

It is possible to try coreboot+payload on
QEMU before messing with the hardware

Do make menuconfig to configure coreboot

check that the Mainboard menu looks like this:

e vendor:; Emulation
e model: QEMU x86
g35/ich9

Leave the menuconfig and do make -jNto compile
The coreboot. romfile inside the build subfolder is your image

You can run QEMU using

gemu-system-x86 64 -M q35 -bios build/coreboot. rom

To build an image for your laptop

you will need a dump of the flash content, to extract:

e |ntel Flash Descriptor

e Intel ME Firmware

e Gigabit Ethernet
Firmware

e Intel GPU VBIOS
(optional)

What there is inside an Intel PC flash:

Flash Descriptor

ME Region

GbE Region

BIOS Region

The Intel ME region is accessible only by ME itself, also, the BIOS
region can be write-protected.

However it is possible to read or write the entire flash by connecting
an external programmer to the flash chip.

Dumping the hard way

The flash chip uses the SPI protocol,

So we can read its content using the SPI interface of a Raspberry Pi
or a similar board with 3.3V GPIO

Find the flash

SOIC-16

9131112 13 14 1546
oSTHANREANE st —. 0

Clips!
You can find the flash chip pinout inside its datasheet

You can use these to connect the chip

SOIC-8 testclip SMD clips

| found the SMD clips more reliable

Connect the wires

First of all unplug your charger and remove the battery

Raspberry Pi pins

866600000

8086806

8866868660000

to be connected in this order

RPi Flash
GND GND
CSO CS
SPI0 SCLK CLK
3.3VPWR 3.3V
SPI0O MISO MISO
SPI0O MOSI MOSI

Flashrom

Compile flashrom from the github repo or install it from your
package manager

The Raspberry Pi command is:

flashrom -p linux spi:dev=/dev/spidev0.0 -r dump.bin

Flashrom may ask you to specify your chip model if he cannot detect
it automatically, you can use the option -c¢ <chipname>

(e.g. on a Thinkpad X220 the option would be -c W25Q64.V)

A good practice is to make two dumps and compare the results
(using diff) to be more safe

https://github.com/flashrom/flashrom

Extract the blobs

The utility 1fdtool included in the coreboot tree can be used to
extract our dump

e Compile the utility

cd coreboot/util/ifdtool
make

e Extract the flash regions

mkdir extracted dump
cp dump.bin extracted dump/
/util/ifdtool/ifdtool -x extracted dump/dump.bin

e You will find the extracted flash regions in the
folder:
= BIOS
= ME blob

= GbE blob
= Flash Descriptor

Configuration

coreboot uses a Linux kernel like configuration

Use make menuconfig to open the configuration tool and the help
button to get a description of the elements.

| will show you a standard configuration, it's up to you to try the
other settings (hint: normal/fallback)

Configuring coreboot pt.|

The main options to set are:

e Mainboard
= Mainboard vendor: your computer brand

= Mainboard model: your computer model
= Rom chip size: the flash chip size
e Chipset
= |nclude microcode in CBFS: Generate from tree
= Add Intel descriptor.bin file: we extracted it
before
= Add Intel ME/TXT firmware: same thing
= Add gigabit ethernet firmware: same thing

Configuring coreboot pt.li

Devices

= Use native graphics initialization: usually works

= Enable PCle Clock Power Management: good idea

Display

= Keep VESA framebuffer: graphical mode instead of
text

Generic Drivers

= Enable TPM support

Payload

= Add a payload: SeaBI/OS or one of your choice

= Secondary Payloads: see here

Compiling
To compile run make -jN

The resulting image will be in coreboot/build/coreboot. rom

Flashing coreboot

To flash the image the first time we need to use the SPI connection,
as we did for the dump

From the next time we can flash directly from linux because in
coreboot the write protection of the BIOS/ME blob is optional

The command to flash using a Raspberry Pi is:

flashrom -c <chipname> -p linux spi:dev=/dev/spidev0.0 -w coreboot.rom

force | want a brick

Once you have booted Linux, you can update coreboot using:

flashrom -c <chipname> -p internal:laptop=force I want a brick -w coreboot. rom

After updating coreboot, the best thing is to turn off completely
your computer in order to run the newly flashed BIOS/ME blob

Intel ME

Intel ME

Intel Management Engine is a secondary processor integrated in all
Intel motherboard chipsets from 2008 onwards.

It is mainly used for Intel AMT (Advanced Management Technology)
on CPUs with vPRO enabled.

Intel AMT is an out-of-band management technology, offering:

e network tunnel over untrusted
network

e remote power control

e remote KVM

e network packet filter

e PAVP for DRM media

® more ...

https://en.wikipedia.org/wiki/Intel_Active_Management_Technology#Features

Intel ME

Micro-Controller
(Located in Graphics and Memory Controller Hub Firmwara)
Intel® Active Management Technology Applications
[Asset Management. Third-Party Data Slore, Remole Management, elc.)
. Core Management
Ad : :
Sa errzgﬁ Services Services Network
Cofiaat {Power Manager, {EventiAlerting Services
{Configuration, Non-Volatile Manager, circuit- (HTTP, TCPIIP,
Provisioning, AGL Memory Manager breaker control TLS, etc.)
Management, etc.) g etc.]
Management Engine Hardware Abstraction Layer
ThreadX Kernel
I I SPI
{sharabla) Flash
Host LAN UMA ME (16Mbit32Mbit)
Interfaces & MAC Paripharals:
(IDE-R, SOL, (Cut-of-Band IF ;
it Crypto, NVM,
HECI) and Circuil SMBUS >
PCI entities.. Breaker Filt
aniiias reaker Filters) SMBus
To sensors

!

PHY

Intel ME

@@@@

PCle

&? USB Ports

SATA

DDR

SSD

HDA
> Audio Codec
S@I@ @ LPC/PEC]

Embedded
Controller
Keyboard & Touchpad

ME capabilities
Intel ME has access to:

Any memory region

The PCl bus

The GPU

Wired and wireless NIC (with dedicated MAC
address)

more ...

The firmware

Its firmware is proprietary, so not security auditable, and it's signed
with RSA by Intel

It's not encrypted but a lot of modules are Huffmann compressed
with unknown hardware dictionary, so their code cannot be easily
accessed.

How do | disable
1t?

How do | disable it?

Until 1st generation Core CPUs (Nehalem) it was possible to remove
the ME firmware by modifying the Intel Flash Descriptor (see the
libreboot page)

From Nehalem onwards, if the firmware is removed, the Computer
turns off after 30 minutes; this is probably done to avoid the bypass
of Intel Anti-Theft (now discontinued)

https://libreboot.org/docs/hcl/gm45_remove_me.html

Result

In all modern Intel computers we have a perfect backdoor
framework, not removable, and with complete access to all the
machine resources.

Also, ME is active even in S5 power state (computer off)

Is there anything
that we can do?

Is there anything that we can do?

In September 2016 Trammell Hudson discovered that wiping the
first 4KB of Intel ME firmware from his Thinkpad X230 with coreboaot,
the Computer would still turn on and won't shut down after 30
minutes.

From this discovery he started digging and found that it is possible
to remove:

e All the partitions but the main one
e All the LZMA compressed modules from the main
partition

ME Region

Partition table

Partition types:

I Generic
"1 EFFS
M Code

We can wipe the code

Even not removing completely Intel ME, this process strongly limits
its capabilites, in fact it removes code for:

e Network access (contained in the removed NFTP
partition)

e PAVP (Protected Audio-Video Path)

e The JVM (meant to enable the use of DRM applets)

me_ cleaner.py

In November 2016, me and Nicola began testing with Intel ME to
replicate Hudson's results and see how much more code we could
remove.

To aid this purpose, Nicola wrote a python script to remove as much
code as possible from an Intel ME firmware image.

github.com/corna/me_cleaner

https://github.com/corna/me_cleaner

Our findings
We confirmed Trammell Hudson's work, in particular:

The partition table can be removed (an internal one will be
used)

All the partitions can be removed except FTPR (the main one)
All the LZMA modules inside the FTPR can be removed

Also all the Huffmann modules but one (BUP) can be removed.

This way we are left with just 50KB of code (compressed size)

This works on Platforms from Sandy Bridge to Broadwell.
These modifications work even with an OEM BIOS

Drawbacks?

Removing the code appears to hang Intel ME
But apart from AMT, there are more things ME can do in a system:

e Platform clock
configuration

e Remote thermal
monitoring

e Silicon Workaround

Until now ~30 me_cleaner users reported no bugs.

Signatures

The code is signed at partition level:

e removing an entire partition doesn't break a signature,
e but removing modules from a partition should break
it.

Then why the system boots even if we remove some modules?

Signs

The signatures work like this:

Partition header

Number of modules

RSA public key

RSA exponent

RSA signature

Partition name

-’ Sy et et \e—

Modules manifests

| $BUP | =
_>

| $KERNEL]

[

]

Module manifest

[Module name

SHA-256 hash

Load base

HH

pr—

Offset

- S et \e—

The signatures work like this:

Partition header -sign-> manifest list -hash-> manifest

The module manifest list signature is valid because it contains the old
hashes (we don't modify them).

But those hashes are broken because we removed the code.
Apparently the hash check is done before executing each module.

So we can not run unsigned code, but we can boot the system.

The last question is:

How can | be sure that Intel ME does not have a backup ROM inside
with a fallback firmware?

The ROMB partition

Luckily the reverse engineering work of Igor Skochinsky answer us:
Inside some versions of ME firmware, there is a special partition
called ROMB (ROM Bypass)

This partition contains code that overrides the internal ROM, used to
fix bugs in early silicon.

The ROMB partition

lgor analized this update partition and found out it contains:

e Common C functions (memcpy, memset,

strcpy...)
e ThreadX routines (Intel ME RTQOS)

e | ow level hardware access API

The ROMB partition

The internal ROM appears to:

e Do basic hardware init

e Check the FTPR partition signature

e | oad the BUP module and jumps to
it

Proof of this can be found inside "Intel Confidential" documents that
you can find on Google

Binary input file Mavigate to your Source Directory (as specified in
Section 2.1) and switch to the Firmware subdirectory. Choose

the ME FW binary image.
Note: You may choose to build the ME Region only. To do so,
Flash Image | Descriptor Region | Descriptor
Map parameter Number of Flash components must
be set to 0.
Note: Loading an ME FW binary image that contains ME ROM
_Bypass unlocks the ME Boot from Flash parameter in
Flash Imaqge | Descriptor Region | PCH Straps |
PCH Strap 10.

Try to google "loading an ME FW binary image" or "management engine
system tools", including quotation marks.

Final notes

If you want to test me_cleaner on your computer,

e You can find a guide here
e And here there are more
details

http://hardenedlinux.org/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html
https://github.com/corna/me_cleaner/wiki/How-does-it-work%3F

Final notes

Here is a rough compatibility table

Gen with vPRO without vPRO
Core2 ok’ ok’
Nehalem WIP WIP
Sandy - lvy Bridge OK? OK?
Haswell - Broadwell NO OK?
Skylake NO ok3

1 See this libreboot page (no code left)
2 Only BUP module left (~50KB)

3 Only FTPR partition left (~668KB)

https://libreboot.org/docs/hcl/gm45_remove_me.html

More info:

Intel ME Firmware Structure
lgor Skochinsky - Rootkit in your laptop - 2012
lgor Skochinsky - Intel ME Secrets - 2014
Trammel Hudson - coreboot Mailing List

Nicola Corna - coreboot Mailing List

http://me.bios.io/ME_blob_format
http://me.bios.io/images/c/ca/Rootkit_in_your_laptop.pdf
https://recon.cx/2014/slides/Recon%202014%20Skochinsky.pdf
https://www.coreboot.org/pipermail/coreboot/2016-September/082016.html
https://www.coreboot.org/pipermail/coreboot/2016-November/082331.html

Thank you!
) DO

These slides are licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported

www.poul.org

https://www.poul.org/

